Assessing Pennsylvania's Watersheds and Drinking Water Supplies

Arianne Proctor
PA Department of Environmental Protection
Bureau of Water Standards and Facility Regulation
February 21, 2008

The Name Game

- Emerging Contaminants
- PiE Pharmaceuticals in the Environment
- PPCP Pharmaceuticals and Personal Care Products
- Microconstituents
- Contaminants of Concern
- EDCs Endocrine Disrupting Compounds

Every Day Products

- OTC drugs
- Prescription pharmaceuticals
- Veterinary drugs
- Nutriceuticals
- Antibacterial soaps
- Fragrances
- Lotions

- Flame retardants
- Plasticizers
- Pesticides
- PCBs
- Detergents
- Shampoos
- Sunscreens
- Cosmetics

Comprised of thousands of distinct chemical entities.

- Numerous therapeutic classes and end uses.
- Enter the environment at the rate of thousands of tons per year
- Little is known regarding the potential for effects.

In general, they are not regulated water pollutants.

- Not a new phenomenon
- Recent advancements in laboratory chemical analysis methodologies have lowered the limits of detection
- Have existed in the environment for as long as they have been used commercially

Far from "Emerging"

- High public visibility
 - media interest

Multi-disciplinary

- Treated effluent from domestic sewage treatment plants discharged to surface waters, re-injected into aquifers (recharge), recycled/reused (irrigation or domestic uses) (3b)
- Overflow of untreated sewage from storm events and system failures directly to surface waters (3b)
- Transfer of sewage solids ("biosolids") to land (e.g., soil amendment/fertilization)
 - "Straight-piping" from homes (untreated sewage discharged directly to surface waters)
 - Release from agriculture: spray drift from tree crops (e.g., antibiotics)
 - * Dung from medicated domestic animals (e.g., feed) CAFOs (confined animal feeding operations)
- Direct release to open waters via washing/bathing/swimming
- * Discharge of regulated/controlled industrial manufacturing waste streams
- Disposal/release from clandestine drug labs and illicit drug usage Christian C. Danahlon, U.S. 1878-Las Venne

- Release of drugs that serve double duty as pest control agents:
 examples: 4-aminopyridine, experimental multiple sclerosis drug → used as avicide;
 warfarin, anticoagulant → rat poison; azacholesterol, antilipidemics → avian/rodent reproductive inhibitors; certain antibiotics → used for orchard pathogens; acetaminophen,
 analgesic → brown tree snake control; caffeine, stimulant → coqui frog control
- Ultimate environmental transport/fate:
 - · most PPCPs eventually transported from terrestrial domain to aqueous domain
 - phototransformation (both direct and indirect reactions via UV light)
 - physicochemical alteration, degradation, and ultimate mineralization
 - volatilization (mainly certain anesthetics, fragrances)
 - some uptake by plants
 - respirable particulates containing sorbed drugs (e.g., medicated-feed dusts)

Origins of Emerging Contaminants

- Human excretion
- Veterinary use of medications
- Livestock operations
- Hospital pharmaceutical waste
- Common practice of flushing unused or expired meds

Concerns

- May degrade quickly, but constant input to water
- Possible subtle effects, even at ppb
- Chlorine in DW or WW makes some by-products more toxic
- Potential for cumulative and synergistic effects from multiple exposures
- Antibiotic resistant bacteria
- More questions than answers about effects of pharms on aquatic species & human health

Endocrine Disruptors

 Synthetic chemicals that when absorbed into the body can either mimic or block hormones in turn disrupting the body's normal functions.

Concerns

- Effects on aquatic life are a major concern.
- Exposure risks for aquatic organisms are much larger than those for humans.
- Aquatic organisms have:
 - continual exposures
 - multi-generational exposures
 - exposure to higher concentrations of PPCPs in untreated water
 - possible low dose effects

Why Can't We Take the Compounds out of the Water?

- POTWs are not designed to remove emerging contaminants
- Promising technologies include:
 - Oxidation
 - Ozonation
 - Ultrasound
 - Activated carbon
 - Reverse osmosis
- Longer retention times (POTWs with nutrient removal) look promising
- Focus on controlling disposal at source

Motivation

- USGS "Reconnaissance" study in 1999-2000 was 1st nationwide investigation of pharms, hormones, & other organic contaminants in 139 streams in 30 states:
 - 82 of 95 antibiotics, prescription & non-prescrip drugs, steroids,
 & hormones were found in at least 1 sample
 - 80% streams had 1 or more contaminant
 - 75% streams contained 2 or more
 - 54% had more than 5
 - 34% had more than 10
 - 13% tested positive for more than 20 targeted contaminants

Kolpin, D.W. et al. 2002. "Pharmaceuticals, hormones, & other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance." Environmental Science & Technology. 36(6):1202-1211.

Recent Issues Attracted Public Attention

- Fish Kills of Smallmouth Bass and Sunfish
 - South Branch Potomac, WV 2002
 - North Fork, Shenandoah, VA 2004, 2006
 - South Fork, Shenandoah 2005
 - Juniata River, Susquehanna, PA 2005
- Intersex in Smallmouth Bass
 - Condtion in which immature eggs are found in the testes
 - Intersex (ovotestis; testisova) is a general term for gonadal abnormalities most often noted microscopically, occasionally macroscopically, in which both male and female characteristics are present
 - Indicator of exposure to estrogenic compounds

Vitellogenin in Male Fishes

- Egg yolk precursor protein
- Males have the gene to produce vitellogenin usually not turned on
- Exposure to natural and synthetic estrogens may stimulate vitellogenin production by males

Journal of Aquatic Animal Health

- Intersex (Testicular Oocytes) in Smallmouth Bass from the Potomac River and Selected Nearby Drainages
 - V. S. Blazer, L. R. Iwanowicz, D. D. Iwanowicz, D. R.
 Smith, J. A. Young, J. D. Hedrick, S. W. Foster, and S. J.
 Reeser
- Journal of Aquatic Animal Health 2007;19:242–253
- The prevalence of testicular oocytes is discussed in terms of human population and agricultural intensity.

DEP Project Overview Phase I

Purpose:

To document the occurrence and distribution of selected emerging contaminants in streams and well water in South Central PA

DEP Project Overview Phase I

- Screen for pharmaceutical and antibiotic compounds in southcentral PA
 - 5 streams—effluent dominated
 - 6 streams—agricultural areas
 - Samples were collected at locations upstream and downstream of the municipal effluents or animal feeding operations
 - 6 wells
- Analyze the data
 - compounds detected?
 - at what concentrations?
- Future activities
 - Part 2 study/follow-up
 - collaboration and coordination

Streams Receiving Wastewater Effluent

- Spring Creek, Berks County
- Lititz Run, Lancaster County
- Killinger Creek, Lebanon County
- Middle Spring Creek, Franklin County
- Mountain Creek, Cumberland County
- *Conoy Creek, Lancaster County
 *disqualified

Streams in Agricultural Areas Dominated by AFOs

- Muddy Run, Chester County
- Bachman Run, Lebanon County
- Snitz Creek, Lancaster County
- Trout Run, Lebanon County
- Little Chickies Creek, Lancaster County
- Three Square Hollow Run, Cumberland County

Wells

 6 locations in Adams, Huntington, Lancaster and Union Counties

Primarily represent agricultural areas

Not used for drinking water

--- PENNSYLVANIA COUNTY BOUNDARY

WELL-WATER SITE AND IDENTIFIER IN TABLE 1

STREAM-WATER SITE AND IDENTIFIER IN TABLE 1

Data Analysis

- Samples collected in March/April, May, July and September 2006
- Analyses were completed on 120 environmental samples and 21 quality-control samples
- Of the 120 environmental samples:
 - 24 samples were collected from wells in ag. areas used to supply water to livestock
 - 48 from stream water locations adjacent to municipal wastewater effluents
 - 48 from stream water locations adjacent to animal feeding operations

Data Analysis

Pharmaceuticals

- Suite of 15 compounds
- USGS National Water Quality Laboratory (NWQL) in Denver, CO

Antibiotics

- Suite of 31 compounds
- USGS Organic Geochemistry Research Laboratory (OGRL) in Lawrence, KS

 In stream samples, 13 pharmaceuticals and 11 antibiotics were detected at least once

 78% of all detections were analyzed in samples collected downstream of municipal wastewater effluents

A total of 5 detections in well samples

Streams Receiving Wastewater Effluent

- Pharmaceuticals:

- Caffine (4.75 μg/L) (micrograms per liter)
- Para-xanthine (0.853 μg/L)
- Carbamazepine (0.516 μg/L)
- Ibuprofen (0.227 µg/L)

- Antibiotics:

- Azithromycin (1.65 μg/L)
- Sulfamethoxazole (1.34 µg/L)
- Ofloxacin (0.329 µg/L)
- Trimethoprim (0.256 μg/L)

- Streams receiving runoff from animal feeding operations
 - Pharmaceuticals: (max. conc. of 0.053 µg/L)
 - Acetaminophen
 - Caffine
 - Cotinine
 - Diphenhydramine
 - Carbamazepine
 - Antibiotics: (max. conc. of 0.157 μg/L)
 - Oxoxytetracycline
 - Sulfadimethoxine
 - Sulfamethoxazole
 - Tylosin

 The average number of compounds detected downstream from municipalwastewater effluents was 13.

 The average number of compounds (pharmaceuticals and antibiotics) detected in sites downstream from animal-feeding operations was 3.

- Well-water samples
 - 5 detections total
 - Tylosin was detected 2 times
 - Cotinine
 - Sulfamethoxazole
 - Diphenhydramine

Frequency of Contaminants Found in Surface Water

Litiz Creek

Killinger Creek

Concentrations of Selected Pharmaceuticals and Antibiotics in South-Central Pennsylvania Waters, March through September 2006

http://pubs.usgs.gov/ds/300/

U.S. Geological Survey Data Series 300

By Connie A. Loper, J.Kent Crawford, Kim L. Otto, Rhonda L. Manning, Michael T. Meyer, and Edward T. Furlong

PART 1: Continuation of Phase

- Continue to characterize surface water downstream of wastewater treatment plants
 - 5 locations from Phase I plus 3 new sites and 1 reference stream
 - There are 6 sampling sites are in the Susquehanna watershed, 2 sites in the Potomac watershed, and one sampling site in the Delaware watershed
- Analysis will include additional suites for hormone analytes and wastewater compounds in water and streambed sediment
- Sampling will occur one time per year for 3 years beginning May 2007

- PART 2: Analysis at WQN Stations
 - Chemical analysis of surface water at 27 Water Quality Network (WQN) Stations
 - Stations were chosen based on their proximity to Public Water Supply surface water intakes (within 3 miles)
 - Samples will be analyzed quarterly for pharmaceuticals, antibiotics, and hormones as well as pathogens and bacteria
 - There are 11 sampling locations in the Susquehanna watershed, 11 in the Ohio watershed, 4 in the Delaware watershed and 1 in the Potomac watershed.

- PART 3: Comprehensive Fish Health Assessment
 - 16 sites statewide
 - Target species include white suckers and smallmouth bass
 - Water and bed sediment will also be analyzed for pharmaceuticals, antibiotics, hormones, and waste water compounds
 - A final report is anticipated in 2009.

- Part 4: Identification of Pathogenic Bacteria
 - USGS Michigan Water Science Center has developed assays for actual bacterial pathogens such as *E. coli* O157, a broad class of pathogenic *E. coli* called Shiga-toxin producing *E. coli* (STEC) and Enterococci that carry the *esp* gene
 - These DNA-based methods may be used to identify the source of fecal pollution
 - The USGS MI WCS and the DEP BOL will analyze for pathogenic and fecal source markers from *E. coli* and enterococci in a side by side PCR method comparison

Acknowledgements

US EPA

USGS Water Science Center

Resources

- http://www.epa.gov/ppcp/
- http://toxics.usgs.gov/
- http://lists.dep.state.fl.us/cgibin/mailman/listinfo/pharmwaste

Questions??

Arianne Proctor

arproctor@state.pa.us

(717) 783-7578

Program Analysis and Support
Bureau of Water Standards and Facility Regulation
PA Department of Environmental Protection

