

12 Lessons on Applying Stormwater Management to Transportation Projects

Overview | The 12 Lessons

- Basic Background
 Pollution found on Transportation Projects
 Obstacles Facing Linear Projects
 Advantages Facing Linear Projects
 Post Construction Stormwater Management vs. Erosion & Sediment Pollution Control for Roadways
 Old Best Management Practice (BMP's) "The Old Way"
- Stormwater Management options for Linear Projects
 The Permit Process

- Cost and Maintenance
 The importance of Education & Community Involvement

Lesson 1 | Basic Background

What Percentage of American's still believe that industry is to blame for pollution in our waterways?

- a. 209
- b. 30%

c. 60% d. 100%

Lesson 2 | Basic Background

Industry is not completely innocent Industrial pollution dumped into North American lakes, rivers, and streams rose by 26% from 1995 – 1999, overshadowing an almost equal reduction in toxic air emissions.

A.D. MARBLE & COMPAN

Lesson 1 | Basic Background

Pollution includes not just toxic chemicals bu other stressors as well

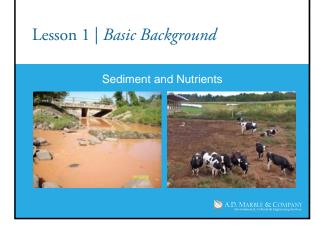
- a. Flow Modification
- b. Excessive Siltation
- c. Nutrient enrichment
- d. Volume Changes

A.D. MARBLE & COMPANY

Lesson 1 | Basic Background

Where is all the pollution coming from?

Non-point source pollution is the leading cause of water pollution in America today and it is expected to increase.



Lesson 1 | Basic Background

What are the two most common non-point Source Pollutants?

A.D. MARBLE & COMPANY Environmental, Coltural & Engineering Services

Lesson 1 | Basic Background

One Significant Source of Sediment is Construction Site Runoff

application of erosion and sediment control practices .

A.D. MARBLE & COMPAN Environmental, Cultural & Engineering Servic

Lesson 1 | Basic Background

What's being done about all this pollution to our waterways? Municipal, State and Federal Stormwater regulations are addressing non-point source pollutan problems though implementation of Best

agement Practices.

Lesson 2 | Pollution Found on Transportation Projects

- 1. Nutrients
- 2. Sediments
- 3. Oil and grease hydrocarbon.
- 4. Organics
- 5. Insecticide
- 6. Byproducts of petroleum processing
- 7. Metals

🥂 A.D. Marble & Company

Lesson 2| Pollutants found on Transportation projects

CHANGE IN WATERSHED CONDITION	WATERSHED RESPONSE
	Increased storm flow volume and peak flow Increased fine sediment and Urban Water Pollutant Loads Reduced groundwater recharge
Increased drainage density due to roads networks.	Increased storm flow volume and peak flow Increased fine sediment and urban water pollutant loads Increased fish passage barriers
Increased fine sediment deposition	Reduced inter-gravel dissolved oxygen levels Loss of fish spawning and macro invertebrate habitat
Loss or Fragmentation of riparian areas	Reduced delivery of large woody debria Reduced bank stability Reduced shading and Temperature Control
Increased pollutant and concentration and loads	Synthetic organic compounds and trace elements found in fish Tumors found on fish Spawning and migration behavior changes Excessive equation plant and algae growth.

Lesson 3 | Obstacles facing Linear Projects

- Right-of-Way
- Maintenance

- Proprietary Items
- Soils

Lesson 4 | Advantages of Linear Projects

- Comprehensive Design Team
 - Roadway Engineers
 - Bridge Engineers
 - Landscape Architects
 - Environmental Scientists
 - Water Resource Engineers
 - Traffic Engineers

🖄 A.D. MARBLE 🍇 COMPANY

Lesson 5 | Post Construction Stormwater Management vs. Erosion & Sediment Pollution Control for Roadways

PCSWM vs ESC

Both are required when submitting an NPDES permit

COMPANY

Lesson 5 | Post Construction Stormwater Management vs. Erosion & Sediment Pollution Control for Roadways

Lesson 5 | Post Construction Stormwater Management vs. Erosion & Sediment Pollution Control for Roadways

Post Construction

Stormwater Management

- a. Controls the pollution after construct and during the "life" of the road .
- b. Control the increased volume and flow of water due to changes in the surface (i.e. addition of pavement).

Lesson 6 | Old Best Management Practices (BMP's)

The Old Way

Conventional tools to manage stormwater are mitigation-based and flood control focused. This strategy emphasizes the efficient collection and rapid conveyance of runoff from roadways to central control ponds.

A.D. MARBLE & COMPANY

Lesson 6 | Old Best Management Practices (BMP's)

Factors that Led to this Approach

 Stormwater has been perceived as a liability and applications have evolved from wastewater technology
 Hard conveyance structures and central control ponds are considered reliable and relatively simple to maintain
 The conveyance and collection approach is relatively simple to model for regulatory requirements
 Construction costs are readily estimated

). MARBLE & COMPAN

<section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Lesson 7 | Low Impact Design

The New Way

Low Impact Development (LID) is an approach to land development and stormwater management that emphasizes conservation, retention, and infiltration through the use of distributed, small-scale facilities integrated with natural features.

> A.D. MARBLE & COMPAN Engineering College & Free Service

Lesson 7 | Low Impact Design

Lesson 7 | Low Impact Development

The New Way

LID designs typically focus on reducing impervious surfaces and maximizing onsite stormwater detention, infiltration, and evaporation

A.D. MARBLE & COMPANY

Lesson 7 | *Low Impact Development*

LID is Simple and Effective

Instead of large investments in complex and costly centralized conveyance and treatment infrastructure, LID allows for the integration of treatment and management measures into urban site features.

A.D. MARBLE & COMPAN

Lesson 7 | Low Impact Development

LID is Economical

It costs less than conventional stormwater management systems to construct and maintain, in part, because of fewer pipes, fewer below-ground infrastructure requirements, and less imperviousness.

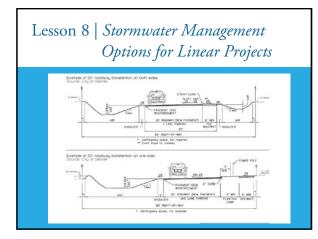
> COMPAN Environmental, Cultural de Engineering Service

Lesson 7 | Low Impact Development

LID is Flexible

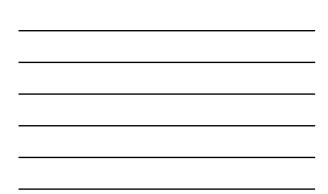
It offers a wide variety of structural and nonstructural techniques to provide for both runoff quality and quantity benefits. LID works in highly urbanized constrained areas, as well as open regions and environmentally sensitive sites.

Lesson 7 | Low Impact Development

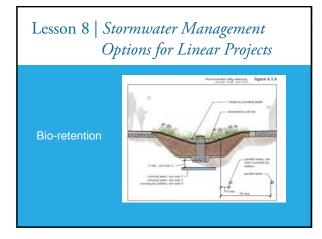

How do we incorporate LID into Transportation Projects??

> A.D. MARBLE & COMPANY Environmental, Coltural & Engineering Services

Lesson 8 | Stormwater Management Options for Linear Projects Design Steps


1.Choose BMP's that require less Right-of-Way

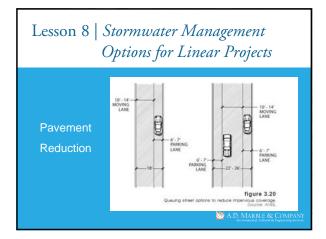
- 2. Choose BMP's where an engineered soil can be used
- 3. Choose BMP's that have the least required Maintenance
- 4. Choose the location wisely



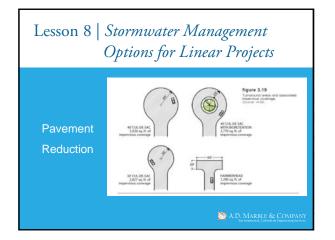
Lesson 8 | Stormwater Management Options for Linear Projects

Lesson 8 | Stormwater Management Options for Linear Projects

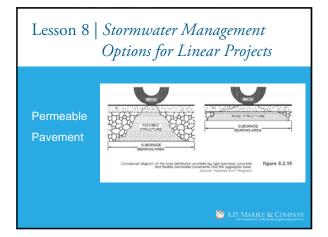
Check Dams and Weirs



Lesson 8 | Stormwater Management Options for Linear Projects


Pavement





Lesson 8 | Stormwater Management Options for Linear Projects

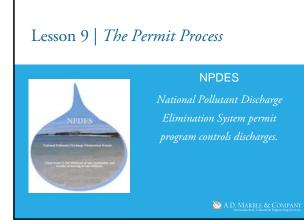
Shared Driveway

Lesson 9 | The Permit Process

Thirty Years of Progress

We've made lots of progress in cleaning up American's waterways over the past 30 years since the Federal Water Pollution Control Ac was amended in 1972.

🖄 A D. Marrie & Comp


16

Lesson 9 The Permit Process

Overall Goal of the Clean Water Act

- a. Established the basic structure for regulating discharges of pollutants into the water of the US and Regulating quality standards.
- b. The CWA made it unlawful to discharge any pollutant from a point source into navigable waters, unless a permit was obtained.

A.D. MARBLE & COMPAN Environmental, Cultural & Engineering Servi

Lesson 9 | The Permit Process

State Permit

 The EPA allows the states to issue NPDES permit – but all have to meet the regulation set forth by the Clean Water Act.
 States issue regulations that must be followed by Counties and Municipalities

🥘 A.D. Marble & Company

Lesson 9 | The Permit Process

Counties

Counties implement ACT 167 plans to comply with the standards set forth by the states.

A.D. MARBLE & COMPAN Environmental, Cultural & Engineering Servi

Lesson 9 | The Permit Process

Municipalities

Municipalities implement Stormwater Management Codes and Regulations to comply with the Counties ACT 167 Plans.

COMPANY A.D. MARBLE & COMPANY

Lesson 10 | Cost and Maintenance

Cost Considerations

Low Impact Development cost is equivalent to the "old" BMP practices

A.D. MARBLE & COMPANY

Lesson 10 | Cost and Maintenance

Cost Considerations

1. Material costs;

- Site specific constraints such as access, topography, soils, groundwater, and parcel area;
- 3. Land use;
- 4. Location;
- 5. Designer, reviewer, and contractor experience,
- 6. Local regulations; and
- 7. Overall economic climate

D. MARBLE & COMPA Invironmental, Cultural de Engineering Se

Lesson 10 | Cost and Maintenance

Standard Roadway Sections vs. LID Road Section Comparison: Standard 24-Foot Asphalt pavement road section with curb and gutter, closed conveyance and an LID road section with 24 feet of pavement but bioretention swales replace the curb and gutter and closed Conveyance system. The analysis has been performed on a typical 1000 foot length of road. The analysis does not include site specific cost parameters such as clearing, grading or E&S or installation.

- carra an	d Roadway	Jections		
Standard Roadway Section	ltem	Unit Cost	Quantity	Cost
	Asphalt	\$35/CY	296 CY	\$10,360
	Gravel	\$12/CY	444 CY	\$5,328
	Curb & Gutter	\$15/LF	2,000 SF	\$30,000
	Sidewalk	\$30/SY	1,111 SY	\$33,330
	Inlet	\$700/Each	8 EA	\$5,600
	Storm Drain	\$18/LF	950 LF	\$17,100
	Treatment Volume	\$4.50/CY	223 CY	\$1,003.50
	Detention Volume	\$4.50/CY	1,025 CY	\$4,612
				\$107,333.50

Lesson 10 Cost and Maintenance

			Mainte	
ID Road S	Section			
D Road Section	Item	Unit Cost	Quantity	Cost
	Soil Mix	\$25/CY	160 CY	\$4,000
	Swale Planting	\$1/5F	2,880 SF	\$2,880
	Mulch	\$20/CY	30CY	\$60
	Swale Excavation	\$4.50/CY	760 CY	\$3,420
	Asphalt	\$35/CY	296 CY	\$10,360
	Gravel	\$12/CY	444 CY	\$5,328
	Permeable Sidewalk	\$40/CY	1,111 SY	\$44,440
	Drive Pipes	\$18/LF	720 LF	\$12,960
	Underdrain	\$8LF	2000 LF	\$16,000
	Washed Rock	\$20/CY	75 CY	\$1,500
	Detention Volume	\$4.50/CY	363 CY	\$1,633.50
				\$102.581.50

Lesson 10 | Cost and Maintenance

Maintenance in the Real World

1. Too infrequen

Г

- b. Only major maintenanc
- . Not completed, particularly when the BMP is privately owned
- d. Improper maintenance decreased the efficacy and can in some cases increase pollutant loading
- e. Lack of maintenance reduces aesthetic qualities
- f. Operation and maintenance language not specified in stormwate ordinance
- g. Level of maintenance varies

A.D. MARBLE & COMPAN Environmental, Cultural & Engineering Servic

Lesson 10 | Cost and Maintenance

What can be done?

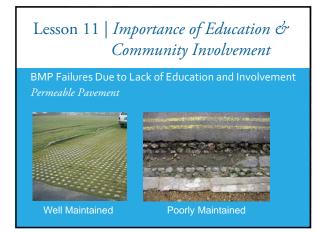
- 1.Begin with a Better Design
- a. Design BMP's that require low mainter
- b. Provide acces
- c. Reduce the chance of faili
- 2.Require Ordinances to Enforce
- a. Specify who is responsible
- b. Maintenance Agreement
- c. Inspections
- 3.Provide Training

🥸 A.D. Marble & Company

Lesson 11 | Importance of Education & Community Involvement

Poor Community Participation was the second most commonly identified barrier when delivering successful stormwater management

A.D. MARBLE & COMPANY

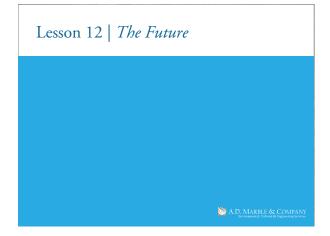

Lesson 11 | Importance of Education & Community Involvement

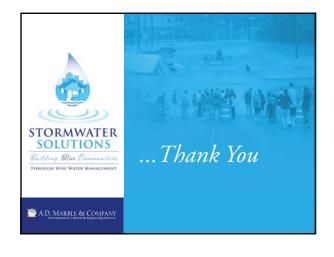
BMP Failures Due to Lack of Education and Involvemen

Rain Gardens

Why did this happen?

Lesson 11 | Importance of Education & Community Involvement


What Types of Community Education are Available?


- a. Maintenance Workshops on LID
- b. Online Media

d. Utility Bill Inserts

A.D. MARBLE & COMPANY Environmental, Cultural & Engineering Service

